Sybilproof Reputation Mechanisms Presented by Ohad Lutzky

A. Cheng¹ E. Friedman²

¹Center for Applied Mathematics Cornell University

²School of Operations Research and Industrial Engineering Cornell University

Multi-Agent Systems - Seminars

• • • • • • • • • • • •

Outline

- Motivation
- Setting
- Sybil strategies
- Sybilproofness
- 2 Reputation Functions
 - Symmetric Reputations
 - Assymetric reputation functions

Motivation Reputation - The settin Sybil strategies Sybilproofness

Outline

Motivation

- Setting
- Sybil strategies
- Sybilproofness
- 2 Reputation Functions
 - Symmetric Reputations
 - Assymetric reputation functions

Motivation Reputation - The setting Sybil strategies Sybilproofness

- In P2P networks (say Bittorrent, say Ebay), one interacts mostly with previously-unknown users, which makes trusting them difficult.
- A "Reputation", derived from other users' previous interactions, can help. (say PageRank, say "stars")

Member Profile: trekkingibis (269 🛬)

E	269 99.6%	Recent Ratings:				
Positive Feedback:				Past Month	Past 6 Months	Past 12 Months
Members who left a positive: Members who left a negative: All positive feedback received:	270 1 306	0	positive	4	13	33
		0	neutral	0	0	0
		ĕ	negative	0	0	0

(日)

earn about what these numbers mean.

Bid Retractions (Past 6 months): 0

Problem Formulation

eputation Functions Summary Motivation Reputation - The setting Sybil strategies Sybilproofness

Member Profile: trekkingibis (269 🚖)

Feedback Score:	269	
Positive Feedback:	99.6%	
Members who left a positive:	270	
Members who left a negative:	1	
All positive feedback received:	306	

Learn about what these numbers mean.

		Past Month	Past 6 Months	Past 12 Months	
Ð	positive	4	13	33	
0	neutral	0	0	0	
	negative	0	0	0	

*ロト *部ト *注ト *注ト

æ

Bid Retractions (Past 6 months): 0

Motivation Reputation - The setting Sybil strategies Sybilproofness

- In those same networks, it's often easy to create "dummy users", and falsify their interactions
- Such users can be used to artifically enhance one's "Reputation"
- How can we define "Reputation" so that this won't be possible?

(日)

Motivation Reputation - The setting Sybil strategies Sybilproofness

Outline

Motivation

Setting

- Sybil strategies
- Sybilproofness
- 2 Reputation Functions
 - Symmetric Reputations
 - Assymetric reputation functions

Motivation Reputation - The setting Sybil strategies Sybilproofness

What-proof what-whats?

- Reputation will be computed based on peer interactions
- We will display those in a **finite** directed graph *G* = (*V*, *E*)
- V each vertex is a user
- *E* an interaction between users *i*, *j* is represented by an edge *i*, *j*, with outcome *c*(*i*, *j*).
- The collection of all such graphs (outcomes included) will be labeled G.

< D > < A > < B > < B >

Motivation Reputation - The setting Sybil strategies Sybilproofness

Reputation functions

Definition 1

A "function" $f : \mathscr{G} \to \mathbb{R}^V$ is called a **reputation function**. We say that a node $i \in V$ in graph G has reputation $f(G)_i \in \mathbb{R}$.

That is, given a graph $G = (V, E) \in \mathcal{G}$, fassigns to each $v \in V$ its **reputation**, denoted $f(G)_i$. (Here in [square brackets])

(日)

Motivation Reputation - The setting **Sybil strategies** Sybilproofness

Outline

1 Problem Formulation

- Motivation
- Setting

Sybil strategies

- Sybilproofness
- 2 Reputation Functions
 - Symmetric Reputations
 - Assymetric reputation functions

Motivation Reputation - The setting **Sybil strategies** Sybilproofness

Sybil strategies

Definition 2

Given a graph G = (V, E) and a user $i \in V$, we say that a graph G' = (V', E')along with a subset $U' \subseteq V'$ is a **sybil strategy** for user i in the network G = (V, E) if $i \in U'$ and collapsing U' into a single node with label i in G' yields G. We can refer to U as the **sybils** of i, and denote a sybil strategy by (G', U').

We assume the system is unable to tell the difference between a sybil and a user.

Motivation Reputation - The setting **Sybil strategies** Sybilproofness

Sybil strategies

Definition 2

Given a graph G = (V, E) and a user $i \in V$, we say that a graph G' = (V', E')along with a subset $U' \subseteq V'$ is a **sybil strategy** for user i in the network G = (V, E) if $i \in U'$ and collapsing U' into a single node with label i in G' yields G. We can refer to U as the **sybils** of i, and denote a sybil strategy by (G', U').

We assume the system is unable to tell the difference between a sybil and a user.

Motivation Reputation - The setting **Sybil strategies** Sybilproofness

Example of a sybil strategy

Note that additive splitting is allowed.

(日)

Motivation Reputation - The setting Sybil strategies Sybilproofness

Outline

1 Problem Formulation

- Motivation
- Setting
- Sybil strategies
- Sybilproofness
- 2 Reputation Functions
 - Symmetric Reputations
 - Assymetric reputation functions

Motivation Reputation - The setting Sybil strategies Sybilproofness

Rank sybilproofness

Definition 3

A reputation function f is **(rank) sybilproof** if for all graphs G = (V, E), and all users $i \in V$, there is no sybil strategy for i, (G', U'), with G' = (V', E') such that for some $u \in U', \exists j \in V$ such that $f(G)_j > f(G)_i$ and $f(G')_u \ge f(G')_j$

In other words, a reputation function is **not** sybilproof if one of the users can overtake another by using a sybil strategy.

Motivation Reputation - The setting Sybil strategies Sybilproofness

Example of a non-sybilproof function

æ

Motivation Reputation - The setting Sybil strategies Sybilproofness

K-sybilproofness

Definition 4

We say that a reputation function is K-sybilproof if it is sybilproof over all possible sybil strategies (G', U') with $|U'| \le K$.

イロト イポト イヨト ・

Motivation Reputation - The setting Sybil strategies Sybilproofness

Value sybilproofness

Sometimes the reputation value itself, and not the relative ranking of reputations, is of interest.

Definition 5

A reputation function f is **value sybilproof** if for all graphs G = (V, E) and all users $i \in V$ there is no sybil strategy for i, (G', U') such that for some $u \in U'$, $f(G)_i < f(G')_u$.

In other words, no user can improve his reputation by using a sybil strategy.

Note that a function can be both value-sybilproof and sybilproof, just one, or neither.

Symmetric Reputations Assymetric reputation functions

Outline

Problem Formulation

- Motivation
- Setting
- Sybil strategies
- Sybilproofness
- 2 Reputation Functions
 - Symmetric Reputations
 - Assymetric reputation functions

- 4 目 ト - 日 ト - 4

-

Can we keep it fair?

- We might want our system to be fair, or anonymous
- We would ignore all "who is who" information
- The edge values would encapsulate all information

Definition 6

A reputation function f is **symmetric** if given a graph isomorphism^a σ and a graph G = (V, E), then for all $i \in V$, $f(G)_i = f(\sigma(G))_{\sigma(i)}$.

^aRelabeling of vertices

That is - renaming the users would have no effect on a symmetric function.

Symmetric Reputations Assymetric reputation functions

Bad news

Theorem 7

There is no symmetric sybilproof nontrivial^a reputation function.

^aNot $f \equiv \text{const}$

イロト イポト イヨト イヨト

э

Symmetric Reputations Assymetric reputation functions

Proof sketch for Theorem 7

For every node with a non-maximal rank, a successful sybil strategy would be duplicating the rest of the graph. Because of symmetry, the maximum of G'would be attained in both copies.

K-sybilproofness

• Are users really required (or able) to pull this sybil strategy off?

• They don't need to:

Theorem 8

There is no nontrivial symmetric k-sybil proof reputation function for any constant k>1

Proof concept

It suffices to show for k = 2. Assume by contrast a sybilproof f exists, and create the graph-copy strategy step by step. The function is 2-sybilproof, so the strategy is unsuccessful at every step, but by the last step it must be - a contradiction.

(D) (A) (A)

K-sybilproofness

- Are users really required (or able) to pull this sybil strategy off?
- They don't need to:

Theorem 8

There is no nontrivial symmetric k-sybil proof reputation function for any constant k>1

Proof concept

It suffices to show for k = 2. Assume by contrast a sybilproof f exists, and create the graph-copy strategy step by step. The function is 2-sybilproof, so the strategy is unsuccessful at every step, but by the last step it must be - a contradiction.

(D) (P) (P) (P) (P)

K-sybilproofness

- Are users really required (or able) to pull this sybil strategy off?
- They don't need to:

Theorem 8

There is no nontrivial symmetric k-sybil proof reputation function for any constant k > 1

Proof concept

It suffices to show for k = 2. Assume by contrast a sybilproof f exists, and create the graph-copy strategy step by step. The function is 2-sybilproof, so the strategy is unsuccessful at every step, but by the last step it must be - a contradiction.

(D) (P) (P) (P) (P)

K-sybilproofness

- Are users really required (or able) to pull this sybil strategy off?
- They don't need to:

Theorem 8

There is no nontrivial symmetric k-sybil proof reputation function for any constant k > 1

Proof concept

It suffices to show for k = 2. Assume by contrast a sybilproof f exists, and create the graph-copy strategy step by step. The function is 2-sybilproof, so the strategy is unsuccessful at every step, but by the last step it must be - a contradiction.

ヘロト ヘ部ト ヘヨト ヘヨト

Symmetric Reputations Assymetric reputation functions

Value sybilproofness

For value sybilproofness, there are certain pathological functions we need to exclude:

Definition 9

Given a graph G, its **B-extension** with respect to i is the graph which is constructed by taking a copy of G and contracting the node $i \in V$ with its double in the copy of G.

Definition 10

A reputation function f is **B-Nontrivial** if there exists a graph G = (V, E) and $i, j \in G$ such that $f(G)_j > f(G)_i$ and $\exists v \in V'$ such that $f(G')_v > f(G')_i$, where G' is the B-extension of G with respect to i.

(日)

Symmetric Reputations Assymetric reputation functions

Value sybilproofness contd.

Theorem 11

If a reputation function f is B-nontrivial^a, then it cannot be value sybilproof, or k-value sybilproof.

^aAnd symmetric?

- Note that PageRank is B-nontrivial and symmetric, and thus is not sybilproof.
- A much better candidate would be Personalized Pagerank.

Symmetric Reputations Assymetric reputation functions

Value sybilproofness contd.

Theorem 11

If a reputation function f is B-nontrivial^a, then it cannot be value sybilproof, or k-value sybilproof.

^aAnd symmetric?

- Note that PageRank is B-nontrivial and symmetric, and thus is not sybilproof.
- A much better candidate would be Personalized Pagerank.

Symmetric Reputations Assymetric reputation functions

Outline

Problem Formulation

- Motivation
- Setting
- Sybil strategies
- Sybilproofness

2 Reputation Functions

- Symmetric Reputations
- Assymetric reputation functions

• (1) • (1) • (1)

.⊒ →

We would like to define an assymetric reputation by computing reputation values with respect to some fixed node in the graph - a trusted user, or perhaps oneself.

- The root ("trusted") node will be labeled s.
- Let P_i be the set of all collections of edge-disjoint paths from s to i in G.
- We allow an edge of value $\alpha + \beta$ to split into two parallel edges with values α, β at will.
- Let g be a function from **paths** to \mathbb{R} .
- Let \oplus be an "addition"-like operator on real numbers.

Symmetric Reputations Assymetric reputation functions

s-centric reputation

We will deal with reputation functions of this kind:

$$(f^{s}(G))_{i} := \max_{\mathscr{P}_{s,i} \in \mathbb{P}_{i}} \bigoplus_{P \in \mathscr{P}_{s,i}} g(P)$$

We set $f^s(G)_s = \infty$.

• With $\oplus = +, g(P) = \min\{c(e) | e \in P\}$, this is maximum flow.

イロト イヨト イヨト

э

Theorem 12

If f^s , as defined above, satisfies the following properties,

Diminishing returns For all s - i paths', if an s - j path P' is an extension of P, then $g(P') \le g(P)$.

Monotonicity \oplus is nondecreasing, and g is nondecreasing with repsect to the edge values.

No splitting Given a single s - i path, if we split P into two s - i paths P_1, P_2 , then $g(P_1) \oplus g(P_2) \le g(P)$.

for all graphs G = (V, E), $s \in V$ and all $i \in V$, then f^s is value sybilproof.

くロ と く 同 と く ヨ と 一

Symmetric Reputations Assymetric reputation functions

Proof.

Let G = (V, E) be a graph, let $s, i \in V, s \neq i$. Let (G', U') be a sybil strategy for i with respect to f^s , with collection of sybils U'. For $u \in U'$, there is some collection of disjoint s - u paths \mathscr{P}' in G' such that $f^s(G')_u = \bigoplus_{P' \in \mathscr{P}'} g(P')$. For each $P' \in \mathscr{P}'$, let Pbe the subpath starting from s and ending at the first node in U'appearing along the path. By D.R., $g(P) \ge g(P')$, and by definition of a sybil strategy, P' must correspond to some s - ipath in G. Let $\mathscr{P} = \{P | P' \in \mathscr{P}'\}$. \mathscr{P} forms an edge disjoint collection of s - i paths in G, so by definition of f^s ,

$$f^{s}(G)_{i} \geq \bigoplus_{P \in \mathscr{P}} g(P) \geq \bigoplus_{P' \in \mathscr{P}'} g(P') = f^{s}(G')_{u}$$

- Under f^s satisfying these conditions, no node can increase their own reputation value.
- A node may still improve their rank by "ruining" another's reputation.
- This won't work if the only nodes who may be affected by *i*'s sybil strategies have lower reputation than *i*.
- $\oplus = \max$ will give us this.

Theorem 13

If f^s satisfies the above properties and additionally, $\oplus = \max$, then f^s is sybilproof. Conversely, if g is such that for all paths P, there exists a strictly longer path P', $P \subsetneq P'$, such that g(P) = g(P'), then f^s being sybilproof implies that $\oplus = \max$.

Summary

- We have shown a possible framework for assessing a reputation mechanism's robustness to sybils
- We have shown that no nontrivial symmetric reputation function is sybilproof for example, pagerank
- We have shown a class of reputation functions which are sybilproof.
- Outlook
 - Personalized pagerank might fall under this class...
 - Primary unsolved problem: Finding a more general set of sufficient conditions for sybilproofness.

(日)